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The stress and optical relaxation of an initially straight stiff polymer chain are studied through Brownian
dynamics simulations �based on a semiflexible bead-rod model� covering a broad range of time scales and
polymer lengths. The strong stress component �11 �where “1” is the direction of the original alignment� is
shown to be associated with the chain’s longitudinal relaxation while the weak stress component �22=�33 is
shown to depend on the chain’s transverse relaxation. The two independent stress components follow a differ-
ent relaxation; this anisotropy is shown to result from the participation of the different relaxation modes in the
transverse direction. The chain’s optical relaxation is shown to be affected by the longitudinal dynamics only.
The early relaxation of the strong stress component �11 and that of the chain’s optical properties constitute a
universal behavior—i.e., valid for any stiffness of the bead-rod chain, since at the early times the bending
forces do not affect the longitudinal dynamics. Based on the knowledge of the physical mechanism and the
chain’s conformational behavior, we predict and explain the polymer stress and optical relaxation. A nonlinear
stress-optic law �valid for any time and chain stiffness� is derived based on the identified relation of the chain
configuration with the optical properties and the polymer stress. A coarse-grain model describing extended
semiflexible bead road chains is also derived.
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I. INTRODUCTION

The present study considers the relaxation of a single stiff
polymer chain from an initial straight configuration in a vis-
cous solvent. Physically this problem may correspond to the
case of a polymer chain fully stretched by a strong flow and
then relaxed by switching the flow off. This problem is also
motivated by recent experiments with single biological mol-
ecules relaxing after being fully extended by applied forces
as well as by the recent development of microdevices involv-
ing stretched tethered biopolymers �e.g., �1–3��. In this ar-
ticle, we focus our attention on the stress and birefringence
relaxation and how they are affected by the corresponding
configuration relaxation. Our interest lies on stiff polymers—
i.e., polymers whose persistence length is larger than their
contour length. Our results are applicable to both synthetic
and biological stiff polymers such as Kevlar, polyesters, actin
filaments, microtubules and rodlike viruses.

The study of the dynamics of semiflexible polymers has
received much attention during the last years. The persis-
tence length of individual molecules of these polymers varies
from 50 nm for DNA to near 15 �m for F-actin and 10 mm
for microtubules �e.g., see �4–6��. By considering that the
smallest length associated with these biopolymers is the di-
ameter of the individual molecule with a typical value of a
few nanometers, we readily realize that semiflexible poly-
mers show a broad range of stiffness which results in some
unique properties of their solutions and networks. As a result,
there has been recently a growing interest in understanding
the properties of semiflexible polymers by both experimental
and theoretical investigations.

Experimental studies employing macrorheological and
microrheological approaches have considered the viscoelas-
ticity of F-actin solutions and networks �e.g., �6–11��, micro-
tubules �12�, and synthetic polymers �e.g., �13–16��. Single-
molecule probing techniques have allowed the investigation

of the dynamics of DNA molecules �e.g., �1,2,17,18�� and
stiffer biological polymers such as actin filaments �e.g.,
�19–21�� and microtubules �e.g., �12��. Theoretical investiga-
tions considered both the conformation and viscoelasticity of
semiflexible polymer solutions especially near equilibrium
�e.g., �22–28��. Studies of polymer solutions far from equi-
librium include the problem of the chain being straightened
by applied forces �e.g., �29,30�� as well as the dynamics of a
chain under various external perturbations �31�.

In this paper we study the stress and birefringence relax-
ation of an initially straight stiff polymer. A number of au-
thors �e.g., �32–36�� have studied the corresponding problem
for flexible polymers. A review has been given in our recent
paper �37� where we investigated both the transverse and
longitudinal dynamics for a flexible bead-rod chain and
showed that the polymer relaxation at intermediate times re-
sults from a quasisteady equilibrium of the tension forces in
the longitudinal direction; i.e., it is the longitudinal dynamics
that controls the chain relaxation. In the present study we
focus our attention on the effects of the chain stiffness. Al-
though we explicitly consider the relaxation of a single poly-
mer chain in a viscous solvent, our results should be valid
even for concentrated polymer solutions and networks as
long as the relaxation of interest occurs on length scales
shorter than that characterizing the entanglements or
crosslinks.

By employing scaling laws, we numerically determine the
relaxation of the polymer stress and birefringence over ex-
tended time scales and polymer lengths. In particular, we
study chains with polymer lengths up to N=40 000 while by
combining our results for the three time behaviors, we cover
near 25 time decades. After discussing the mathematical for-
mulation and the numerical algorithm in Sec. II, we present
and analyze the stress relaxation in Sec. III. The chain’s op-
tical relaxation �i.e., the relaxation of the polymer birefrin-
gence and the associated index-of-refraction tensor� is con-
sidered in Sec. IV. In both sections, we employ the relaxation
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mechanism and the configuration evolution we identified in
our earlier study �38� to predict and explain the relaxation of
the polymer stress and birefringence. We also provide a de-
tailed analysis of the relaxation of the chain’s different
modes and how they affect the chain evolution.

The strong stress component �11 is shown to be associ-
ated with the chain’s longitudinal relaxation while the weak
stress component �22 is shown to depend on the chain’s
transverse relaxation. Because for an incompressible fluid
only the stress difference �11−�22 is meaningful, our study
shows that for the current problem the stress difference con-
sists of two components: a dominant one resulting from the
relaxation of the chain length and a weak one resulting from
the relaxation of the chain width. The chain’s optical relax-
ation is shown to be affected by the longitudinal dynamics
only. Since the bending forces do not affect the longitudinal
dynamics at early times, the early behavior of the strong
stress component �11 and that of the chain’s optical proper-
ties are universal—i.e., valid for any chain stiffness.

In addition, by combining the relation between the optical
properties and the chain configuration with the relation be-
tween the polymer stress and the chain conformational evo-
lution, in Sec. V we propose a generalized stress-optic law
describing the relaxation for any chain stiffness and time
period. As discussed in Sec. VI, the inherent nonlinearity of
the current problem, associated with the initial straightness
of the polymer chain, results in a nonlinear force-extension
relation and thus a nonlinear stress-optic law which obvi-
ously contradicts the common linear relationship �39,40�. A
coarse-grain model describing extended semiflexible bead
road chains �ESBRC� is also derived.

We emphasize that the numerical results and the physical
insight presented in this paper are based on a bead-rod model
described in the next section, and thus they should not be
confused with those from other polymer models. The bead-
rod model we employ in this study has the important physi-
cal feature of preserving the length at the local scale �and
thus the contour length of the entire chain� at all times. In
addition, note that our study investigates a problem of non-
linear dynamics �i.e., nonlinear perturbations far from equi-
librium�; thus our results should not be confused with those
in the linear regime—e.g., �22,23,27,28�. Some additional
issues involving our computational model and results and
their association with recent analytical predictions are ad-
dressed in Sec. VII.

II. MATHEMATICAL FORMULATION
AND COMPUTATIONAL ALGORITHM

A discretized version of the wormlike chain model
�41,42� is employed based on a Brownian dynamics method
developed in Ref. �32�. This method considers a �flexible�
bead-rod model with fixed bond lengths and ignores hydro-
dynamic interactions among beads as well as excluded-
volume effects. �For the extended stiff chains we study in
this paper, hydrodynamics has little effect on intrachain dy-
namics �41�.� The polymer chain is modeled as NB= �N+1�
identical beads connected by N massless links of fixed length
b �which is used as the length unit�. The position of bead i is

denoted as Xi, while the link vectors are given by di=Xi+1
−Xi.

To account for polymer stiffness, we add a bending en-
ergy proportional to the square of the local curvature. For a
continuous chain the bending energy is given by

�bend =
Eb

2
�

0

L � � d̂

�s
�2

ds =
Eb

2
�

0

L � �2X

�s2 �2

ds , �1�

where L is the �constant� contour length of the chain and d̂
the local unit tangent. The bending energy E is related to the
persistence length Lp via E /kBT�Lp /b, where kB is the
Boltzmann constant. The bending energy of the discrete
model is given by

�bend =
Eb

2 	
i=2

N �Xi+1 − 2Xi + Xi−1

b2 �2

b = E	
i=1

N−1 �1 −
di · di+1

b2 � ,

�2�

and thus it depends on the angle �i between two successive
links since di ·di+1=b2 cos �i. The properties of the polymer
chain are specified by the �constant� contour length of the
chain L and its persistence length Lp or equivalently in di-
mensionless form by the number of links N and the dimen-
sionless bending energy E=E /kBT.

Assuming that the bead inertia is negligible, the sum of all
forces acting on each bead i must vanish, which leads to the
following Langevin equation

�
dXi

dt
= Fi

bend + Fi
rand + Fi

ten + Fi
cor, �3�

where the friction coefficient � is assumed to be uniform.
Fi

rand is the Brownian force due to the constant bombard-
ments of the solvent molecules. The force Fi

ten=Tidi
−Ti−1di−1, where Ti is a constraining tension along the direc-
tion of each link di, ensures the link inextensibility. Fi

cor is a
corrective potential force added so that the equilibrium prob-
ability distribution of the chain configurations is Boltzmann.
�More details on how to determine efficiently these forces
may be found in Ref. �32�.� The bending force Fi

bend is de-
rived from the discrete form of the bending energy, Eq. �2�,

Fi
bend = −

��bend

�Xi

=
E
b2 	

j=i−2

i

�� j,i−2di−2 + � j,i−1�di − di−1� − � j,idi+1� . �4�

In the equation above as well as in all the equations in this
paper, a term exists only if its index can be defined within its
permitted bounds. For example, for i=N the term di+1 in Eq.
�4� does not exist, while for i=1 only the term di+1 exists. We
note that, in deriving Eq. �4�, we used the fact that the link
lengths are fixed. The same modeling of the chain stiffness
may also be employed for variable link lengths—e.g., for a
bead-spring model; in this case the equation for the bending
force contains some additional terms from the differentiation
of the link lengths.
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The resulting system based on Eq. �3� may be solved in
O�N� operations facilitating the study of long and stiff
chains. Ensemble averages are determined by employing 104

to 105 independent initial configurations. The polymer stress
�=−	i=1

NB XiFi
total, where Fi

total is the sum of all forces appear-
ing on the right-hand side of Eq. �3�, is calculated efficiently
by eliminating the fluctuating terms of large magnitude
which produce vanishing expectation values �32�. In the fol-
lowing sections we present the polymer stress in units of
kBT. We emphasize that the numerical method employed in
this work has been used to study semiflexible polymers near
and far from equilibrium—e.g., �23,28,38�—and will not be
discussed further in the present paper.

The birefringence B is a sensitive measure of the average
conformation of the polymer molecules. For light propagat-
ing along the “3” direction, the dimensionless birefringence
is given by �33�

B = 
�n11 − n22�2 + 4n12
2 , �5�

where n is the dimensionless index-of-refraction tensor:

n = 	
i=1

N

di di. �6�

Both birefringence and the index-of-refraction tensor have
been nondimensionalized with

2�

9

�n2 + 2�2

n
�	� − 	�� , �7�

where n is the isotropic part of the index-of-refraction tensor
while 	� and 	� are the polarizabilities parallel and perpen-
dicular to a link, respectively �33�. For a straight chain
aligned along the “1” direction, the birefringence is B=N
while the three relevant components of the index-of-
refraction tensor, called refraction components in this article,
are n11=N and n22=n12=0.

Our algorithm has been parallelized by employing mes-
sage passing interface �MPI� and thus it can be used on both
shared- and distributed-memory multiprocessor computers
such as the IBM pSeries 690 and Linux Superclusters pro-
vided by the National Center for Supercomputing Applica-
tions �NCSA� in Illinois. On both types of machines, the
efficiency is almost 100% even for a high number of proces-
sors. Utilizing this optimized parallel algorithm, we routinely
employ up to 320 of the fastest processors to study single
chains with more than N=40 000 beads as we show in this
paper and thus we are able to identify the polymer behavior
of long chains or at very small times. The numerical method
employed in this work has been used to study semiflexible
polymers near equilibrium �27� as well as the relaxation of
initially straight flexible and stiff polymers �37,38,43�, and
will not be discussed further in the present paper.

Throughout this paper, we denote the longitudinal and
transverse lengths of the chain as R� and R�, of the links as
d� and d�, and the longitudinal and transverse positions of
the beads �with respect to the chain’s center of mass� as X�

and X�, respectively. �The longitudinal and transverse direc-
tions refer to the orientation of the entire chain.� We empha-
size that for an elongated chain, the chain’s width R� scales

similarly to the transverse bead position X�, while the
chain’s length R� scales similarly to the sum of the longitu-
dinal length d� of all links—i.e., R� �	d�. In addition, owing
to the link inextensibility, the transverse length d� of a link is
associated with its longitudinal length d�—i.e., d�

2 =b2−d�
2,

where b is the fixed distance between two successive beads.
Thus, properties which depend on R�, d�, or d� should scale
with the chain’s length, while those which depend on R� or
X� should scale with the chain’s width.

The Brownian forces give rise to a microscopic time scale
associated with the diffusive motion of one bead, 
rand
=�b2 /kBT, which is used as the unit for the times reported in
this work if no other unit is used. Similarly, the bending
forces give rise to a microscopic time scale associated with
the relaxation of the angle between two successive links. For
large bending energy E�1, this time scale is given by

bend=�b2 /E=
rand /E�
rand. This time scale also consti-
tutes the first of a series of time scales associated with the
bending vibrations of portions of the polymer chain with
increasing length. The largest time scale, associated with the
entire polymer chain, is denoted as 
���L4 /Eb2

= �N4 /E�
rand.
All properties presented in this paper are calculated as,

and refer to, the ensemble averages of the corresponding
instantaneous values. The birefringence is formally calcu-
lated by Eq. �5�. Owing to the fact that the refraction com-
ponent n12 is always negligible for the current problem �as
discussed in Sec. IV�, the formal calculation of the birefrin-
gence is identical to the ensemble average of the instanta-
neous values of this quantity. In the figures presented in the
next sections, the polymer length may be presented by either
the number of beads NB or the number of links N. Obviously
for long enough chains there is no difference, but for small to
moderate length chains the difference may be significant.
Thus in the figures below we use that number which pro-
duces the best fitting in the scaling laws with the understand-
ing that for long enough chains there is no distinction.

III. STRESS AND CONFORMATIONAL RELAXATION

Forcing a polymer chain to obtain a straight configuration,
the polymer accumulates only normal stresses which decay
as the chain relaxes towards the equilibrium shape. Assum-
ing that “1” is the direction of the initial configuration, the
strong component of the normal stress is �11, while the other
two components are equal, �22=�33, owing to symmetry.
Also no shear stress develops in our system �i.e., �ij=0 for
any i� j�. At equilibrium the stress is simply �=−I �where I
is the unit 3�3 matrix—e.g., �11=�22=−1� owing to the
motion of the center of mass as discussed in our previous
article on the relaxation of flexible chains �37�. Subtracting
the equilibrium value, the two independent nonzero compo-
nents of stress ��11 and �22� have opposite signs since in the
“1” direction the polymer chain is being compressed while in
the other two directions the chain is being extended. �Based
on the way we define the stress, �11+1�0 while �22+1

0.� Thus in the figures below we plot the strong component
as ��11+1�, and the weak component as −��22+1�.
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A. Short times

Considering a straight polymer chain, the bending forces
are exactly zero and thus they do not affect the initial poly-
mer stress. Therefore, for this problem a stiff chain is ex-
pected to show an initial stress identical to that of a flexible
chain. The strong-stress component scales as �11�N3 asso-
ciated with O�N2� link tensions �necessary to maintain link
inextensibility� for each of the N links �32�. On the other
hand, the weak-stress component is exactly �22=−�N+1� as-
sociated with the transverse component of the Brownian
forces—i.e., O�1� stresses per bead over �N+1� beads �37�.
Therefore, even dilute polymer solutions of stiff chains under
strong extensional flows are expected to show large stresses
associated with the strong stress component �11.

To verify our conclusions above and in addition to deter-
mining the time scale of the initial stress relaxation, in Fig. 1
we plot the polymer stress just after the chain is left to relax
for long stiff chains with E /N=10. As this figure reveals,
initially �11=O�N3� while �22=−�N+1�. In addition, the ini-
tial decay from the plateau occurs at times t�
ten�N−2 for
both stress components.

Figure 1 reveals that the initial stress relaxation of long
stiff chains is identical to that of flexible chains �37�, and

thus it can be explained similarly. In particular the short-time
behavior of all chains denotes a period of dominant trans-
verse motion; each polymer bead shows a transverse free
diffusion X��R�� t1/2 due to the dominant effective
Brownian force F�

rand� t−1/2. Owing to the link inextensibil-
ity, the longitudinal length of each link is shortened as b2

−d�
2=d�

2 � t which results in a chain’s length reduction
R�

2�0�−R�
2�N2b2−N2d�

2�N2t �38�. The dominant force in
the longitudinal direction is the corresponding component of
the tension force F�

ten�Td� �N2 �since T�N2 are the ten-
sions along the nearly straight chain�.

We emphasize that during the short times, the dominant
forces in the longitudinal and transverse directions are not
able to produce any stress relaxation: �11�	Td�

2

�NT�N3—i.e., it results from O�N2� link tensions for each
of the N links—while �22�	X�F��N—i.e., it is associ-
ated with the transverse Brownian forces.

The transition from short to intermediate times occurs
when one of two dominated transverse forces F�

ten�Td�

�N2t1/2 and F�
bend�Ed��Et1/2 balances the transverse

Brownian force F�
rand. For long enough stiff chains—i.e., for

N� �E /N�—F�
ten balances first F�

rand at times 
ten�N2 which
thus denote the end of the short-time behavior as clearly
shown in Fig. 1 above.

Short stiff chains are expected to show a behavior similar
to that of long chains during short times. To verify this, we
determined the stress and configuration evolution for short
stiff chains with N�100 and the same stiffness ratio E /N
=10. As shown in Fig. 2, the two independent stress compo-
nents are again �11�N3 and �22=−�N+1�.

The difference between long and short stiff chains lies on
the time scale denoting the end of the short-time behavior. As
Fig. 2 clearly shows, for short chains the transition to the
intermediate-time behavior occurs at times t�
bend�E−1.
The explanation for this difference lies in the fact that for
short enough stiff chains, the transverse bending force grows
faster than the transverse tension force during the short
times, and thus it balances first the transverse Brownian force
at times 
bend �i.e., requiring that F�

bend�F�
rand result in t

�
bend�. The distinction between short and long stiff chains
can be easily made by requiring that F�

bend�F�
ten or equiva-

lently 
bend�
ten which results in N� �E /N�. We can also
obtain a more accurate description if we include the numeri-
cal coefficient of the two time scales. Figure 2 shows that

bend
10−3E−1 while Fig. 1 shows that 
ten
10−2N−2, and
thus the requirement 
bend�
ten is valid for N�10�E /N�.
For chains with stiffness ratio E /N=10, the polymer length
should be N�100, in agreement with our numerical results
shown in Fig. 2 above.

As a conclusion, during the short times the dominant
transverse Brownian force F�

rand� t−1/2 on each polymer bead
produces a transverse free diffusion R�

2 � t and a �constant�
weak stress component �22=−�N+1�. Owing to the link in-
extensibility, the width increase results in a length reduction
R�

2�0�−R�
2�N2t. The dominant longitudinal tension force

F�
ten�N2 produces a �constant� strong stress component �11

�N3. The end of the short-time behavior occurs when the
transverse tension or bending force on each bead balances
the transverse Brownian force; this happens at times 
ten

10-5 10-3 10-1 101
10-2

10-1

100

time  t N2

(σ11 + 1)

N3

N=400

40000

E/N=10

(a)

10-5 10-3 10-1 101
10-1

100

101

time  t N2

-(σ22 + 1)
N

N=400

40000

E/N=10

(b)

FIG. 1. �Color online� Stress relaxation of a long stiff polymer
chain with E /N=10 at short times. Scaling law for the stress com-
ponents �a� ��11+1� and �b� ��22+1�. �Note that ��22+1� is nega-
tive.� Both curves were generated by employing chains with N
=400,1000,4000,10000,40000.
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�N−2 for long stiff chains N� �E /N� and at times 
bend

�E−1 for short stiff chains N� �E /N�. Thus, short times de-
note a period of dominant transverse motion for the polymer
chain which is not able to induce any stress relaxation.

B. Early intermediate times

At the end of the short times, the transverse free diffusion
of the polymer beads is arrested; during the intermediate
times all the length scales of the chain affect the polymer
relaxation and a �significant� relaxation of the accumulated
O�N2� tensions and O�N3� stresses is expected. As we dis-
cussed in Ref. �38�, the intermediate times for stiff chains are
divided into two physically different periods. During the
early intermediate times, the longitudinal bending force F�

bend

is negligible compared to the strong tension force F�
ten

=O�N2�. �We recall that for a straight stiff chain, F�
bend is

identically zero.� Thus the early relaxation is identical to that
for flexible chains. On the other hand, the bending forces
affect the late period of the relaxation, until the end of the
bending relaxation at times 
��N4 /E. The transition times
between the two periods has been identified in our previous
work as the times 
mid�N4 /E3 �38�.

The stress relaxation at early intermediate times

ten� t�
mid is shown in Fig. 3, where a power-law decay
is clearly evident over eight time decades. We note that we
produce this behavior by employing the scaling-law
methodology—i.e., by monitoring the polymer stress of
chains with increasing length over a short time period only,
while in the corresponding figure the time and stresses are
scaled with their values at the end of the behavior. �More
details may be found in our earlier publication �43�.� Figure
3 shows that at early intermediate times the polymer stress is

�11

E1.5 � � t

N4E−3�−1/2

or �11 � N2t−1/2, �8�

�22

E0.5 � � t

N4E−3�−1/6

or �22 � N2/3t−1/6. �9�

Thus an anisotropy in the stress relaxation is observed at
early intermediate times. Comparing these results to those
for flexible chains, we observe that the strong-stress compo-
nent �11 shows exactly the same relaxation for both chains—
i.e., its behavior is universal for any stiffness of the bead-rod

10-6 10-4 10-2 100 102
10-3

10-2

10-1

100

time  t /τbend

(σ11 + 1)

N3
B

N=5, 10, 40, 100 E/N=10

(a)

10-6 10-4 10-2 100 102
10-2

10-1

100

101

time  t /τbend

-(σ22 + 1)
N

N=5, 10, 40, 100

E/N=10

(b)

FIG. 2. �Color online� Stress relaxation of a short stiff polymer
chain with E /N=10 at short times. Scaling law for the stress com-
ponents �a� ��11+1� and �b� ��22+1�. Both curves were generated
by employing chains with N=5,10,40,100.

10-15 10-11 10-7 10-3
10-2

100

102

104

106

time  t /τmid

(σ11 + 1)

E1.5

-1/2

-3/4N=100

400
1000

4000
10000

40000 E/N=10

(a)

10-15 10-11 10-7 10-3
10-1

100

101
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time  t /τmid

-(σ22 + 1)

E0.5

-1/6

-1/4
N=100

400
1000

4000
10000

40000 E/N=10

(b)

FIG. 3. �Color online� Stress relaxation of a stiff polymer chain
with E /N=10 at early intermediate times. Scaling law for the stress
components �a� �11 and �b� �22. The curves were generated by
employing chains with N=400,1000,4000,10000,40000. Also
shown is the power-law decay at late intermediate times.
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chain. On the other hand, the weak stress component of flex-
ible chains shows a slower relaxation, ��22�flex�N1/2t−1/4

�37�.
We emphasize that all power laws presented in this paper

via our computational results can be verified through simple
scaling arguments. For example, as discussed in the next
section, the relaxation of the strong-stress component during
the late intermediate times, is �11�N3E−3/4t−3/4. �Note that
this law is derived from the relaxation of short stiff chains in
the entire intermediate times and thus is independent of the
early intermediate-time behavior of long stiff chains pre-
sented in this section.� Thus during the early intermediate
times, the strong-stress component decreases from a magni-
tude of �11=O�N3� at short times 
ten�N−2 to a magnitude
of �11=O�E3/2� at the transition times 
mid�N4 /E3. Match-
ing these two stresses with a single power law ta gives

��11�short � N3� t

N−2�a

� ��11�late � E3/2� t

N4E−3�a

,

�10�

which is only valid for a=−1/2 and thus at early intermedi-
ate times �11�N2t−1/2 in agreement with our numerical re-
sults shown in Fig. 3�a�. The same can easily be shown for
the weak-stress component �22.

To explain the relaxation of the two independent stress
components we utilize the configuration relaxation mecha-
nism we have identified in our previous study �38�. In par-
ticular, during the early intermediate times there is a quasi-
steady equilibrium of tensions associated with the deforming
action of the Brownian forces, T�Nt−1/2. During these times
the polymer length decreases as R�

2�0�−R�
2�Nt1/2 or �R�

=R��0�−R� � t1/2 while the chain width increases as R�
2

�N−1/3t5/6 �38�.
Based on the mechanism above, it is straightforward to

show that the relaxation of the strong-stress component �11
is associated with the longitudinal dynamics only. In particu-
lar, by considering the entire polymer chain or summing over
all beads, we obtain

�11 � R�F� � Nd�F� � N2t−1/2, �11�

where we use that d� �1, R� �N, and F� �Td� �T. On the
other hand, we may conclude that the relaxation of the weak-
stress component �22 results from the relaxation of the poly-
mer width only. In particular, the transverse evolution of the
polymer chain, R��X��N−1/6t5/12, reveals the dominant
transverse force on each bead:

F� � �
dX�

dt
� N−1/6t−7/12. �12�

Thus by summing over all beads, the stress decay is

�22 � NX�F� � N2/3t−1/6, �13�

in agreement with our numerical results shown in Fig. 3�b�.
The anisotropy in the polymer relaxation depicted at Eqs.

�8� and �9� above may be attributed to the participation of the
different relaxation modes in the transverse direction. In par-

ticular, note that if the chain were to relax transversely with
only the shortest mode, the width evolution would be
�R�

2 �SM �d�
2 �b2−d�

2 or

�R�
2 �SM � N−2�R�

2�0� − R�
2� � N−1t1/2, �14�

which obviously underestimates the true width evolution. On
the other hand, if the chain were to relax transversely with
only the longest mode, then the width evolution would be

�R�
2 �LM � R�

2�0� − R�
2 � Nt1/2, �15�

which overestimates the true width evolution. The participa-
tion of the different modes in the transverse relaxation results
in a relaxation rate between the two extreme rates of the
shortest and longest modes. In addition, we note that if the
chain were to relax transversely with only one relaxation
mode, then the width growth R�

2 should follow the same
power law as the length reduction R�

2�0�−R�
2—i.e., a t1/2

power law as the growths of the shortest and longest mode
verify; thus the anisotropic relaxation results from the par-
ticipation of the different relaxation modes in the chain’s
transverse evolution.

Proceeding further, we may conclude that at the beginning
of the intermediate times t�N−2 the chain relaxes trans-
versely with its smallest mode only owing to the short-time
transverse free diffusion �i.e., R�

2 �d�
2 � while as the time

increases longer modes participate in the chain relaxation. To
provide a qualitative picture of the mode relaxation, we may
determine the evolution of the average relaxation mode by
replacing the contribution of the different modes by a single
mode with a time-dependent length and amplitude. The
transverse growth of such mode is the same as that for the
entire chain—i.e., R�—while the link inextensibility at the
mode wave results in a time-dependent wave number NM
which should follow the requirement R�

2 �NM
−2�R�

2�0�−R�
2�

and thus

NM � N2/3t−1/6. �16�

Therefore, the wave number of the average mode decreases
with time, from NM �N at times 
ten�N−2, to NM �E1/2 at
times 
mid�N4 /E3; i.e., the mode’s wavelength increases
with time from R�

M �1 at 
ten to R�
M �N /E1/2 at 
mid.

The mechanism of the longitudinal relaxation of stiff
chains is identical to that for flexible chains, and thus all
polymer properties which depend on the chain longitudinal
reduction should show a universal behavior—e.g., the
strong-stress component �11. On the other hand, the chain’s
transverse evolution is affected by the chain stiffness and
thus polymer properties which depend on the chain width do
not show a universal behavior. To explain this, observe that,
compared to a flexible chain, a stiff chain is less likely to
relax transversely with short modes and thus for a given
length reduction R�

2�0�−R�
2 the stiff chain shows a greater

width evolution, �R�
2 �stiff�N−1/3t5/6� �R�

2 �flex�N−1/2t3/4.
This results in a larger weak-stress component for the stiff
chain, ��22�stiff�N2/3t−1/6� ��22�flex�N1/2t−1/4.

The different magnitudes of the two stress components at
the end of the early intermediate times—i.e., �11=O�E3/2�
while �22=O�E1/2�—show that during the entire early inter-
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mediate times the polymer chain is still far from equilibrium.
This conclusion is also supported by the fact that even at
times 
mid the chain width is much smaller than its value near
equilibrium—i.e., �R�

2 �mid=O�N3 /E5/2�� �R�
2 �eq=O�N3 /E�.

We also conclude that the anisotropy in the stress relaxation
is caused by the corresponding anisotropy in the configura-
tion relaxation and thus by the influence of the different re-
laxation modes in the chain’s transverse evolution.

C. Late intermediate times

We now turn our attention to the chain relaxation during
the late intermediate times where the bending forces affect
the longitudinal relaxation of the polymer chain. To reveal
the polymer behavior during the times 
mid� t�
�, ideally
we would monitor a long chain over the extended period
�
ten ,
�� which is still computationally impractical to
achieve. Clearly a scaling law should be used; in this case we
should employ the property of the scaling law methodology
which dictates that the behavior of short chains represents
the late behavior of longer chains—i.e., property �iii� in Ref.
�43�. For example, for stiff chains with E /N=10, we may
expect to be able to capture the late intermediate-time behav-
ior by employing chains with N�100 �since we captured the
early behavior with chains 100
N�40 000 in Sec. III B.� It
is important to realize that these short chains should show
only one intermediate behavior over the entire period

bend� t�
�, identical to the late intermediate-time behav-
ior of the long chains we seek. To explain this, observe that
by requiring 
ten�
mid results in N� �E /N�; these short
chains also show 
ten�
bend. Therefore the two time scales
of the early intermediate-time behavior, 
ten and 
mid, should
disappear now. �Note that the first inequality shows that 
mid
disappears while the second one shows that 
ten is replaced
by 
bend as the beginning of the intermediate times.� Com-
bining this with the analysis for the short-time behavior pre-
sented earlier in Sec. III A, we may conclude that for short
chains with N� �E /N�, after balancing the transverse Brown-
ian forces at times t�
bend, the bending forces start to affect
both the transverse and the longitudinal relaxation of the
polymer chain until the end of the bending relaxation at
times t�
�.

Figure 4 shows that during the late intermediate times the
polymer stress is

�11 � N3E−3/4t−3/4 and �22 � NE−1/4t−1/4. �17�

The �direct� dependence of both stress components on the
chain stiffness E is in agreement with our conclusion that
during these times the bending forces should affect the chain
dynamics. The different power-law decays of the two stress
components reveal that there exists an anisotropy in the
stress relaxation even during the late intermediate times.

To explain the relaxation of the two independent stress
components we utilize again the configuration relaxation
mechanism we have identified in our previous study �38�. In
particular, during the late intermediate times the polymer
length reduction R�

2�0�−R�
2�N2E−3/4t1/4 is associated with a

T�N2E−3/4t−3/4 relaxation of tensions affected by both

Brownian and bending forces. During the same times the
chain width increases as R�

2 �E−1/4t3/4.
Similarly to our analysis for the early intermediate times,

it is straightforward to show that the relaxation of the strong
stress component �11 is associated with the chain’s longitu-
dinal dynamics only. By considering the entire polymer
chain or summing over all beads, we obtain

�11 � R�F� � Nd�F� � N3E−3/4t−3/4, �18�

where we use that d� �1, R� �N, and F� �Td� �T. The re-
laxation of the weak-stress component �22 results from the
relaxation of the polymer width only. In particular, the trans-
verse evolution of the polymer chain, R��X��E−1/8t3/8,
reveals the dominant transverse force on each bead,

F� � �
dX�

dt
� E−1/8t−5/8, �19�

and thus by summing over all beads, the stress decay is

�22 � NX�F� � NE−1/4t−1/4, �20�

in agreement with our numerical results shown in Fig. 4�b�.
The anisotropy in the stress relaxation depicted at Eq. �17�

above results from the participation of the different relax-
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FIG. 4. �Color online� Stress relaxation of a stiff polymer chain
with E /N=10 at late intermediate times: scaling law for the stress
components �a� �11 and �b� �22. The curves were generated by
employing chains with N=5,10,40,100.

STRESS, BIREFRINGENCE, AND CONFORMATIONAL¼ PHYSICAL REVIEW E 74, 021918 �2006�

021918-7



ation modes in the transverse direction, similar to what hap-
pens during the early behavior. To provide a qualitative pic-
ture of the mode relaxation, we determine again the
evolution of the average relaxation mode by replacing the
contribution of the different modes by a single mode with a
time-dependent length and amplitude. The wave number NM
of this mode is given by R�

2 �NM
−2�R�

2�0�−R�
2� or

NM � NE−1/4t−1/4, �21�

and thus it decreases with time from NM �E1/2 at times

mid�N4 /E3 to NM �1 at times 
��N4 /E; i.e., the mode’s
wavelength increases with time from R�

M �N /E1/2 at 
mid to
R�

M �N at 
�. This means that at the end of the bending
relaxation at times 
�, the polymer chain relaxes with its
longest mode only as we can easily verify since at times 
�,
R�

2 �R�
2�0�−R�

2�N3 /E.
As a conclusion, during the late intermediate times the

chain longitudinal relaxation is associated with the relaxation
of the dominant tensions which are now affected by both
Brownian and bending forces. The tension relaxation T
�N2E−3/4t−3/4 is associated with a length reduction R�

2�0�
−R�

2�N2E−3/4t1/4 and results in a strong-stress component
relaxation of �11�N3E−3/4t−3/4. Owing to the participation of
the different relaxation modes in the transverse relaxation,
the chain width increases anisotropically as R�

2 �E−1/4t3/4;
the dominant transverse force is F��E−1/8t−5/8 and the asso-
ciated weak-stress component relaxes as �22�NE−1/4t−1/4.
Therefore, the anisotropy in the stress relaxation is caused by
the corresponding anisotropy in the configuration relaxation
and thus by the influence of the different relaxation modes in
the chain’s transverse evolution.

The late intermediate-time behavior discussed in this sec-
tion is valid for any stiff chain E�N. To verify this conclu-
sion we determined the stress relaxation of a very stiff chain
with E /N=104 at late intermediate times. As shown in Fig. 5,
both stress components �11 and �22 of this chain show a
behavior identical to that for a chain with E /N=10. Observe
that for E /N=104 the late intermediate-time behavior is valid
for smaller times �and longer chains� compared to that for
E /N=10; to show this in this figure we include chains with
N=400,1000 for the very stiff chain with E /N=104. We note
that, in this figure, to distinguish the curves for the two
chains we scale the time with 
rod�N3—i.e., the long-time
scale of the linear relaxation of stiff chains; if we scale the
time with 
��N3 /E, both curves fall as the one shown in
Fig. 4 above.

The different magnitudes of the two stress components
during the late intermediate times along with their aniso-
tropic relaxation show that during these times the polymer
chain is still far from equilibrium. Only at the end of the late
intermediate behavior at times 
� the chain is near equilib-
rium since then the two stress components have equal mag-
nitudes, �11=O�1�=�22, while the chain width has reached
its scale at equilibrium �R�

2 �eq�N3 /E. �This fact results in an
increased noise at the end of the curves in Figs. 4 and 5.�

Thus no long-time relaxation is present for the transient
dynamics of stiff chains, in direct contrast to the flexible
chains where a long-time exponential relaxation is necessary

to revert the chain for a practically straight shape at the end
of intermediate times to the equilibrium coil-like one �as we
discussed in Ref. �37��. We emphasize that the final linear
relaxation towards equilibrium �e.g., see �26–28�� is indistin-
guishable from the noise of the Brownian motion, and thus it
cannot be revealed via transient Brownian dynamics �espe-
cially when no variance reduction technique is employed as
happens in our study�.

IV. BIREFRINGENCE RELAXATION

The relaxation of the birefringence for initially straight
flexible chains was studied by Doyle, Shaqfeh, and Gast
�33�, where it was found that initially the birefringence de-
cays linearly with time while for long times there is an ex-
ponential decay. In a subsequent study, Doyle et al. �34�
studied the stress and birefringence relaxation of flexible
chains following extensional flow. In the recent work of
Ghosh et al. �44�, a nonlinear relation between stress and
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FIG. 5. �Color online� Stress relaxation of a stiff chain with
E /N=10 and a very stiff chain with E /N=104 at late intermediate
times: scaling laws for the stress components �a� �11 and �b� �22.
The curves were generated by employing chains with N
=5,10,40,100 for E /N=10 and N=5,10,40,100,400,1000 for
E /N=104. By scaling the time with 
� instead of 
rod, the curves
for the two values of stiffness ratio E /N fall as the one shown in
Fig. 4.
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birefringence was proposed based on the similarities of the
finitely extensible nonlinear elastic �FENE� and bead-rod
models for extended flexible chains.

To be able to identify the optical relaxation at all times
and, most importantly, to relate this relaxation to the configu-
ration relaxation and the problem mechanism, we studied
separately the relaxation of each of the three refraction com-
ponents appearing in Eq. �5�. The study of these components
reveals that the contribution to birefringence of the compo-
nent n12 is always negligible. �This component is at least two
to three orders of magnitude smaller than the polymer bire-
fringence.� Thus for the current problem Eq. �5� simplifies to

B 
 n11 − n22. �22�

Therefore, from now on, we focus our attention only on the
relaxation of the refraction components n11 and n22.

The first step in our analysis is to identify how exactly the
chain’s optical properties are associated with the chain con-
figuration. We note that the refraction component n11 is di-
rectly associated with the longitudinal length of each link, d�,
and thus with the chain’s length R�,

n11 = 	 d�d� � Nd�
2 �

1

N
R�

2. �23�

The same happens for the refraction component n22, which is
directly related to the width of each link d�,

n22 = 	 d�d� � N�b2 − d�
2� �

1

N
�R�

2�0� − R�
2� �24�

�i.e., owing to the link inextensibility, d� is associated with
the link length d� and thus with the chain’s length�. Thus,
both refraction components are associated with the chain’s
length R�. The same is valid for birefringence owning to Eq.
�22�.

Therefore, the optical properties of initially extended
polymers can be predicted and explained through the chain’s
longitudinal relaxation we have identified in our earlier study
�38�. Our predictions are in excellent agreement with our
numerical results at all times and polymer stiffness. To show
this agreement, we present below our numerical results dur-
ing intermediate times only due to the particular importance
of this time period being affected by all the chain length
scales.

During the short times t�N−2 for all chains, the birefrin-
gence shows a linear dependence on time,

B�0� − B �
1

N
�R�

2�0� − R�
2� � Nt , �25�

due to the corresponding free diffusion of the polymer beads
�38�. Figure 6�a� reveals that during the early intermediate
times of stiff chains, 
ten� t�
mid, the polymer birefrin-
gence shows the expected t1/2 power-law reduction,

B�0� − B �
1

N
�R�

2�0� − R�
2� � t1/2. �26�

�We emphasize that, in order to reveal the birefringence re-
laxation during the intermediate times, we should plot the
birefringence reduction B�0�−B, and not the birefringence

itself.� In addition, Fig. 6�b� shows that during the late inter-
mediate times 
mid� t�
�, the birefringence reduction is

B�0� − B �
1

N
�R�

2�0� − R�
2� � NE−3/4t1/4, �27�

which is again in excellent agreement with our predictions
based on the relation between the chain’s optical properties
and the polymer length.

We note that the birefringence relaxation shown in Fig.
6�a� constitutes a universal behavior valid for any polymer
stiffness. To show this numerically, in Fig. 7 we present the
same behavior during the intermediate times of flexible
chains, 
ten� t�
rouse �where 
rouse�N2�.

As a closure to this section, we emphasize again that both
refraction components n11 and n22 contribute significantly to
the polymer birefringence at all times and for any chain stiff-
ness. �This is supported by Eqs. �23� and �24� above as well
as by direct comparison of our numerical results for the two
refraction components, n11 and n22.� Therefore in the study
of optical properties the contribution of the refraction com-
ponent n22 should not be discounted.

10-11 10-9 10-7 10-5 10-3 10-1
10-5

10-4

10-3

10-2

10-1

100

time  t /τmid

B(0)-B

N2 E-1.5

1/2

1

1/4

N=100
400

1000
4000

10000

E/N=10

(a)

10-13 10-11 10-9 10-7 10-5 10-3 10-1
10-6

10-4

10-2

100

time  t /τ

B(0)-B

N2 E-1

1/4

1 N=5

10
20

40
100

E/N=10

(b)

FIG. 6. �Color online� Scaling law for the birefringence relax-
ation at �a� early and �b� late intermediate times for a stiff chain
with E /N=10. Also shown is the linear relaxation at short times.

STRESS, BIREFRINGENCE, AND CONFORMATIONAL¼ PHYSICAL REVIEW E 74, 021918 �2006�

021918-9



V. GENERALIZED STRESS-OPTIC LAW

The optical properties of polymer solutions are associated
with the polymer stress � through a stress-optic law, and
thus experimental measurements of birefringence can pro-
vide information on the polymer stress if the stress-optic law
is known. The most common form of this law is a linear
relation between the components of the index-of-refraction
tensor and the corresponding components of the stress
tensor—i.e., nij=C�ij where C is the stress-optic coefficient
�39,40�. For the problem of relaxation of initially straight
polymers, no shear stress is developed in the system while
the normal stress is dominated by the stress component �11
where “1” is the direction of the initial extension �see Sec. III
above�. Since for this problem we have shown that the two
independent refraction components n11 and n22 behave simi-
larly to birefringence, we seek a stress-optic law as a relation
between the polymer stress �11 and the birefringence B. In
addition, our goal is to provide a generalized law valid for
any time and chain stiffness.

For the case of flexible chains, Doyle, Shaqfeh, and Gast
�33� showed that the ratio of stress over the refraction com-
ponent is constant at long times. In our notation, this law can
be written as

�11/B = const. �28�

The explanation of this simple relation lies in the fact that at
long times t�N2, the stress and optical properties show the
same exponential decay resulting from the corresponding ex-
ponential decay of the polymer length. �See Figs. 4�a� and
7�b� in Ref. �37�.�

In the recent work of Ghosh et al. �44�, based on the
similarities of the FENE and bead-rod models for flexible
chains, a more general relation between stress and birefrin-
gence was found which in our notation can be written as

�11 �
NB

B�0� − B
. �29�

�The same relation was also proposed in the work of Doyle
et al. �34� for the relaxation of several FENE-based models.�

We note that this relation represents the relaxation of initially
straight flexible chains and it is valid for intermediate and
long times.

To derive a generalized stress-optic law valid for any time
and stiffness we employ the specific mechanism via which
the configuration relaxation affects the polymer stress and
the chain’s optical properties. In particular, in this paper we
have established the relation between the chain’s optical
properties and the polymer length for both flexible and stiff
chains

B�0� − B 
 �n11�0� − n11� + n22

�
1

N
�R�

2�0� − R�
2� � �R� , �30�

where �R� �R��0�−R�. We have also established the relation
between the polymer stress and the chain’s length for stiff
chains:

�11 � R�F� � N2d�R�

dt
, �31�

where the dominant longitudinal tension forces are given by
F� ��chd�R� /dt while �ch�N is the friction coefficient for
the entire chain. Note that Eq. �31� is also valid for flexible
chains as we discussed in our earlier work �37�.

By combining Eqs. �30� and �31�, a generalized stress-
optic law is derived,

�11 � N2d�B�0� − B�t��
dt

, �32�

which is valid for both flexible and stiff chains, and for all
time periods—i.e., for short, intermediate, and long times.
One can easily verify analytically the universal validity of
our stress-optic law by utilizing the known relaxation of
stress and birefringence for both flexible and stiff chains at
all time periods.

To show the validity of our stress-optic law numerically,
in Fig. 8 we plot the ratio of the stress �11 from our numeri-
cal results for flexible �from Ref. �37�� and stiff chains �pre-
sented in Sec. III� to the value predicted by our generalized
stress-optic law, Eq. �32� above. Note that the increased
noise results from the calculation of the derivative d�B�0�
−B�t�� /dt via a backward Euler time-integration scheme.
This figure reveals that for any chain stiffness this ratio is
approximately constant with time while for long chains it is

0.02; i.e., it is independent of the chain length N.

The generalized stress-optic law given by Eq. �32� reveals
a nonlinear relationship between the polymer stress and the
optical properties. We note that this nonlinearity results from
the fact that the derivative d�B�0�−B�t�� /dt is a nonlinear
function of the birefringence B. For example, at the interme-
diate times of flexible chains and the early intermediate times
of stiff chains, this law may result into the nonlinear Equa-
tion �29� above. During the late intermediate times of stiff
chains, our stress-optic law may result in the following non-
linear equation:
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FIG. 7. �Color online� Scaling law for the birefringence relax-
ation at intermediate times for a completely flexible chain �E=0�.
Also shown is the free diffusion at short times.
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�11 � � ��B�eq

B�0� − B
�3

, �33�

where ��B�eq�N2 /E is the scale of the birefringence reduc-
tion B�0�−B at the end of the bending relaxation at times 
�

as we can deduce from Eq. �27� above.

VI. FORCE-EXTENSION RELATION

Physically the nonlinear stress-optic relationship results
from the inherent nonlinearity of the current problem which
is associated with the initial straight configuration of the
polymer chain and produces a nonlinear force-extension re-
lation. In particular, during the intermediate times of flexible
chains and the early intermediate times of stiff chains, the
longitudinal �tension� force is

F� � �ch
d�R�

dt
�

N

�R�

�
N2

�R�
2 , �34�

while during the late intermediate times of stiff chains, this
force is given by

F� � N−1� ��R��eq

�R�
�3

� N−1� ��R�
2�eq

�R�
2 �3

, �35�

where ��R�
2�eq�N3 /E is the scale of the length reduction

�R�
2�R�

2�0�−R�
2 at the end of the bending relaxation at times


�. Only during the long times of flexible chains does Eq.
�32� denote a linear stress-optic relationship �given by Eq.
�28� above� since at these times both stress and birefringence
are linear functions of the chain length �37� owing to the fact
that the polymer chain is not far from equilibrium anymore,
and thus the force-extension relation is linear.

The combination of Eqs. �34� and �35� along with a
smooth transition at times 
mid defines a new model for ex-
tended semiflexible bead road chains:

FESBRC �
N2

�R�
2�1 + � �R�

2

N3/E3/2�2�−1

. �36�

In the equation above FESBRC is the force along the chain’s
longitudinal direction while N3 /E3/2= ��R�

2�mid is the scale of
the length reduction at the transition times 
mid. For coarse-
graining reasons, we may write Eq. �36� as

FESBRC �
L2

L2 − Q2�1 + �L2 − Q2

L3/Lp
3/2 �2�−1

, �37�

where Q is the chain’s end-to-end distance. The numerical
coefficient missing from Eq. �37� should be 1 if we want the
ESBRC model to match the FENE model for flexible chains.

We emphasize that our ESBRC model is formally derived
from the relaxation of an extended semiflexible polymer in
the absence of external forces. However, one may use this
model to describe the dynamics of a semiflexible polymer
chain even under external forcing, the same way one may
use the FENE model for flexible chains. �For example, one
may consider a coarse-grain dumbbell chain where the
spring force is given by the ESBRC model while the chain
obeys the Langevin equation of motion.�

VII. DISCUSSION

In this section we address several issues that have arisen
during the review process. Since these issues involve general
questions on the computational model employed in our work
and its association with recent analytical predictions, we
think that it is for the reader’s benefit to address these issues
in a separate section which can be easily accessible for future
reference.

In our work we utilize the semiflexible bead-rod model
described in Sec. II. The same model has been employed by
several research groups to study the dynamics of semiflex-
ible polymers near and far from equilibrium—e.g.,
�23,26–28,38�. Results from this computational model show
excellent agreement with analytical predictions based on the
wormlike chain model; e.g., see �23,28�.
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FIG. 8. �Color online� Generalized stress-optic law for flexible
and stiff chains. �a� Completely flexible chains �E=0� with N
=5,10,20,40,100,160,400. �b� Stiff chains �E /N=10� with N
=5,10,40,100,400,1000,4000,10000. Note that we plot the ratio
of �11 from our numerical results �see Ref. �37� for flexible chains
and Sec. III above for stiff chains� to the one predicted by Eq. �32�.
The increased noise results from the calculation of the derivative
d�B�0�−B�t�� /dt.
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The semiflexible bead-rod model we employ is based on
the �flexible� bead-rod model developed by Grassia and
Hinch �32� and includes a corrective potential force Fi

cor so
that the equilibrium probability distribution of the chain con-
figurations is Boltzmann as discussed in Sec. II. We empha-
size that in our study the addition of these forces is a matter
of preference; i.e., we obtain the same results even when
these forces are omitted. �The inclusion of the corrective
potential forces may affect the distribution of the angle be-
tween two successive links but it does not affect the bulk
properties we study.�

In addition, the bead-rod model we employ is a discrete
polymer model as commonly happens with other computa-
tional or even analytical polymer models. For any discrete
model, the existence of a minimum length scale �e.g., the
size of a bead or the link length� and the associated time
scale �e.g., 
rand� give rise to the so-called short-time behav-
ior �e.g., the one discussed in Sec. III A�. After this behavior,
the polymer dynamics is independent of the model’s dis-
creteness. Because of this, some researchers prefer not to
present the short-time behavior of their �computational or
analytical� model; others prefer to present this behavior so
that we are fully consistent with the model we employ. Most
importantly, the short-time behavior reveals clearly the initial
properties of the discrete chain �e.g., the tensions and poly-
mer stress at full extension for the current problem� as well
as the dynamics at the beginning of the intermediate-time
behavior.

Another issue arising during the review process has to do
with the t7/8 scaling law �appearing in Ref. �23� and else-
where� and the reason why this law does not appear in the
present study. We emphasize that this law is valid in the
linear regime of perturbations around equilibrium while in
the current problem we study nonlinear perturbations. By
employing �transient� Brownian dynamics simulations �as
we do in our study� we can only investigate nonlinear dy-
namics. �Note that the linear dynamics are investigated com-
putationally via correlations of fluctuations at equilibrium;
e.g., see �23,26,27�.� We emphasize that for the specific prob-
lem we study in this paper, the linear relaxation is already
known from previous analytical and computational studies
�23,26–28�.

In addition, we emphasize that the results based on the
relaxation of initially straight bead-rod chains �e.g., from the
present work, our previous studies �37,38�, and the study of
Grassia and Hinch �32�� also represent the relaxation of ex-
tended bead-rod chains in strong flows after the flow is
turned off. For example, Ref. �34� found a universal curve
for relaxation after the cessation of strong flows which coin-
cides with that for an initially straight flexible bead-rod
chain. We also note that the bead-rod polymer model is al-
ways associated with finite tension forces even at full exten-
sion.

In the present work, we utilize the configuration relax-
ation and the associated mechanism we revealed in our re-
cent Letter �38� to present and analyze the polymer proper-
ties including the polymer stress, the solution birefringence,
and the configuration relaxation modes. In particular, our ear-
lier study reveals that after the short-time �discrete� behavior,
the polymer length shows an early t1/2 universal relaxation

�i.e., valid for any chain stiffness� and a late t1/4 relaxation
valid for semiflexible and stiff chains. In a later analytical
study, Hallatschek, Frey, and Kroy �31� considered the lon-
gitudinal relaxation of stiff polymers in several external, lin-
ear and nonlinear, perturbations. For the relaxation of ex-
tended stiff polymers, the analytical study predicts the early
t1/2 and late t1/4 power-law relaxation found in our earlier
work �38�. �See Table II of the analytical work in �31�.� In
addition, Hallatschek, Frey, and Kroy predicted an interme-
diate t1/3 power law due to homogeneous tension relaxation.

Thus, a question arises on the validity of this t1/3 power
law and, in general, the association between our earlier com-
putational work �38� with the analytical study �31�. To ad-
dress this issue, we should first discuss the limits of validity
of the two types of studies. Our computations solve the full
nonlinear Langevin equation �3� above; however, they are
restricted to polymer chains with E /N=10 for the early re-
laxation �e.g., see Figs. 3 and 6�. Our results for the late
relaxation are much less restricted since in this paper we
present results for E /N=10 and E /N=104 in Fig. 5.

On the other hand, analytical solutions may predict the
chain evolution for a large stiffness range �e.g., for
E /N�1�; however, due to the complexity �and nonlinearity�
of the relevant problems, they may be based on unproved
assumptions, while their range of validity is not well known.
For example, the t1/3 power law presented in Ref. �31� is
predicted to be valid for E /N�1; however, it is unclear
what is the time duration of this law for the chains E /N
=10 studied in our work.

Based on our computational results, currently we cannot
verify or reject the analytical prediction of the intermediate
t1/3 power law. To explain this, observe that for any polymer
property we have studied �e.g., length, width, stress, and bi-
refringence�, our computations reveal over many time de-
cades the existence of the early and late behaviors. Between
these two behaviors there exists a transition region of about
one time decade; e.g., see Fig. 3. Due to its small size for
chains with E /N=10, it is unclear if this region constitutes
the predicted intermediate law or is just a transition from the
early to the late behavior. To be able to verify or reject the
intermediate t1/3 power law computationally, one needs to
study the early behavior �over extended time periods� of
much stiffer chains which is currently unattainable.

Based on the same reasoning, currently one cannot verify
or reject computationally not only this specific intermediate
power law but even additional �analytically predicted� inter-
mediate laws. However, one thing is certain: the earlier and
later polymer behaviors should always be the t1/2 and t1/4

laws we found in our previous study �38�. �As explained in
our Letter, at early times the chain stiffness cannot affect the
longitudinal dynamics and thus the polymer should always
show the universal t1/2 law; the late t1/4 law is well demon-
strated by our numerical results for E /N=10,104.� Thus, the
existence of intermediate laws �if any� will not change our
results discussed in this paper; they will merely change the
transition time scale 
mid. In addition, our reasoning of pre-
dicting and explaining the polymer properties will still be
valid; e.g., the polymer stress during an intermediate behav-
ior may be explained similarly to that for the early and late
polymer stress presented in Sec. III above.
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As a closure, we emphasize that although we discuss
above the possibility of the existence of an additional inter-
mediate power law, our own interpretation of our numerical
results does not support this law. This can be easily under-
stood based on our �low-noise� results for the polymer stress
shown in Fig. 3�a� which reveal a rather rapid transition from
the early to the late behavior.

VIII. CONCLUSIONS

In this paper we studied the relaxation of an initially
straight stiff polymer by employing Brownian dynamics
simulations based on a semiflexible bead-rod model. Our in-
terest was concentrated on the stress and birefringence relax-
ation and how they are affected by the corresponding con-
formational relaxation of the polymer chain.

During the short times t�
ten, the transverse free diffu-
sion of the chain is not able to produce any stress relaxation
and the birefringence shows a linear relaxation. During the
early intermediate times 
ten� t�
mid, the tension relax-
ation is associated with a length reduction R�

2�0�−R�
2�Nt1/2

and results in a strong-stress component relaxation of �11
�N2t−1/2 and a birefringence relaxation B�0�−B� t1/2. Ow-
ing to the participation of the different relaxation modes in
the transverse relaxation, the chain width increases aniso-
tropically as R�

2 �N−1/3t5/6 which produces a relaxation �22
�N2/3t−1/6 for the weak-stress component. During the late
intermediate times, the tension relaxation is associated with a
length reduction R�

2�0�−R�
2�N2E−3/4t1/4 and results in a

strong-stress component relaxation of �11�N3E−3/4t−3/4 and
a birefringence relaxation B�0�−B�NE−3/4t1/4. The trans-
verse relaxation modes result in an anisotropical width in-
crease R�

2 �E−1/4t3/4 and a weak-stress component relaxation
of �22�NE−1/4t−1/4.

It may prove useful to future studies to determine the
numerical coefficient of the time scales appearing in this ar-
ticle. Figure 2 shows that 
bend
10−3E−1 while 
ten

10−2N−2 based on Fig. 1. In addition, Fig. 4 shows that

�
10−3N4 /E. �Note that 
bend and 
� should have the same
numerical coefficient since they belong to the same series of
time scales.� Figure 3 suggests that 
mid
10−5N4 /E3. Based
on the property of the scaling law methodology which dic-
tates that the behavior of short chains represent the late be-
havior of longer chains �43�, the same coefficient is derived
if we require that 
ten

mid and assume that this occurs for

N
10�E /N�. We emphasize that all these numerical coeffi-
cients are approximate estimates since the transition from
one to the next behavior does not occur at an exact time but
occupies a time zone.

The longitudinal relaxation of the polymer chain at the
early intermediate times constitutes a universal behavior
valid for any stiffness of the bead-rod chain. The same hap-
pens for any polymer property which depends only on the
chain length such as the strong stress component �11 and the
chain’s optical properties �i.e., the birefringence and the re-
fraction components�. On the other hand, during the late in-
termediate times, both the longitudinal and transverse relax-
ations of the polymer chain �and thus all the polymer
properties which depend on the chain’s length or width� were
shown to be valid for any stiff chain E�N.

By combining the relation between the optical properties
and the chain configuration with the relation between the
polymer stress and the chain configuration, we proposed a
generalized stress-optic law describing the relaxation for any
chain stiffness and time period. We emphasize that the inher-
ent nonlinearity of the current problem �associated with the
initial straightness of the polymer chain� results in a nonlin-
ear force-extension relation and the nonlinear stress-optic
law given by Eq. �32�. A coarse-grain model describing ex-
tended semiflexible bead road chains �ESBRC� was also pro-
posed.

Knowledge of the physical mechanism and the chain’s
conformational behavior helps us understand the properties
of the polymer solution. In this paper by employing this pro-
cedure, we were able to predict and explain the polymer
stress and optical relaxation. It is important to realize that the
�bulk� properties of the polymer solution—e.g., stress and
birefringence—are functions of the chain configuration and
thus can be predicted and explained based on the knowledge
of the conformational behavior. Therefore, we believe that
the methodology we employ in this article is well suited to
study other problems in the area of polymer dynamics.
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